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Abstract--In this paper, we will use the construction tech-
nique proposed in [1] to construct multidimensional trellis coded
modulation (TCM) codes for both the additive white Gaussian
noise (AWGN) and the fading channels. Analytical performance
bounds and simulation results show that these codes perform very
well and achieve significant coding gains over uncoded reference
modulation systems. In addition, the proposed technique can
be used to construct codes which have a performance/decoding
complexity advantage over the codes listed in literature.

Index Terms--AWGN channel, fading channel, multidimen-
sional MI_K TCM codes.

I. INTRODUCTION

S WAS POINTED out in [1], for modulation codesover the additive white Gaussian noise (AWGN) chan-

nel, the main parameter of interest is the minimum squared
Euclidean distance between the transmitted code sequences

and the number of nearest neighbors. Details on the above

parameters are available in [2] and [3], and as such, we will not
reiterate these design considerations here. The aforementioned

design considerations will be the basis of construction of the
modulation codes for the AWGN channel in this paper.

If the channel is changed to a fading channel, most codes

designed for the AWGN channel no longer perform well, sim-

ply because the design parameters of a modulation code which
need to be optimized for the fading channel are different from
that for the AWGN channel. For the fading channel, we shall

consider two scenarios. For the first case, we shall consider the

Rayleigh-fading channel with slow fading, coherent detection,
no channel state information, independent symbol fading and

minimum squared Euclidean distance as the decoding metric.

These assumptions have been considered so as to enable us to

compare our codes with the ones listed in literature. Examples
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3 and 4 construct codes for this scenario. For the second case,

we consider the MSAT channel with light shadowing. Example

5 constructs a code for this case.

We would like to add that the code construction technique is

universal and is by no means restricted by the aforementioned

assumptions. For the fading channels in general, the error per-

formance of a code primarily depends on its minimum symbol

distance, the minimum product distance and path multiplicity.

It depends on the minimum squared Euclidean distance to
a lesser extent. Detailed discussion on these parameters of

interest is given in [4] and [5]. As such, we will not reiterate

these design considerations here. The dominant parameter of
interest is, however, the minimum symbol distance, and as

such we will concentrate on optimizing this parameter, when

we construct codes for the fading channel.

This paper is organized as follows: In Section II of this

paper, we will derive general analytical bounds on the perfor-
mance of the modulation codes using the multistage decoding

techniques proposed in Part I of this paper. In Section III,

we will construct examples using the proposed technique and

compare them with the codes listed in literature.

II. PERFORMANCE ANALYSIS

In this section, we will derive a general expression for

the bit-error probability (BEP) of the multidimensional trellis

coded modulation (TCM) codes decoded using the multistage

technique proposed in [1, Section V].
For 1 < i < q, let Xi be a random variable, where the value

of Xi denotes the number of bit errors at the ith decoding stage

at a particular time instant t. Hence, 0 _< X_ _< k_. Then, the
BEP of the multidimensional TCM code, denoted Pb(e), is

Pb(e) = E Xi ki

= (E(XI) + E(X2) +"" + E(Xq)) ki

(2.1)

where E(-) denotes the expectation operator. For 2 < i < q,
E(Xi) can be broken up into two terms, the first one being the

expected number of errors at the ith stage assuming that the
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previous i - 1 stages of decoding are correct and the second

one being the expected number of errors at the ith stage due to

erroneous decoding at either one of the previous i - 1 stages
of decoding, i.e., the error propagation term. Hence,

E(Xi) 5 (E(Xi)le .... propagation"PEi ) + E(Xi)lithstage error

(2.2)

where E(X_)lerror propagation denotes the error propagation

term, PE, denotes the probability of error propagation from

the previous stages and E(Xi)l/thstag e error denotes the term
due to erroneous decoding at the /-stage, assuming that the

previous i - 1 stages of decoding are correct. Hence, (2.1) can

be rewritten in the following form:

Pb(e) _< E(Xi)lerror propagation" PE_)

+ }"_(E(Xi)l.hstago error) k_. (2.3)
i=1 -- i=1

Except for a few specific cases, it is not possible to obtain
a general expression for the expected number of bits in error

due to error propagation. The expected number of bits in error

due to error propagation depend on both the choice of the

inner codes as well as the outer codes, as will be shown in

the examples to be discussed later in this paper. As such, we
will therefore derive a general expression for the rest of the
terms in (2.3).

Let V be the transmitted code sequence. Using [1, eq.

(3.12)] V can be written in the form A(¢l(Vl) + ¢2(v2) +

• ..+¢q(Vq)), where vl for I < i < q denotes a code sequence

in the convolutional code at the ith stage, Ci.

For 1 < i _< (q - 1), let us consider the term

E(Xi)lith stage e ..... Recall from [1, Section V] that at the

ith stage of decoding, we form the trellis A(C'i), where a code

sequence in A(C'i) is of the form ,k(¢1 (X'l) + ¢2(v2) + "" +

¢i-l(_,-1) + ¢/(ui) + wi), where ui is a code sequence
in the convolutional code at the ith level, C_, w_ is a

sequence of points from Qi, and for 1 _< j < (i- 1), qj
denotes the estimate of vj. Since we are considering the term

E(Xi)lith stage error, Vj = Vj for 1 < j < (i -- 1). Also, since

Ci is a linear code, the code sequence ui can be written in

the form ui = vi + e, where e is code sequence in Ci. As

such, any code sequence in A(C_) can be rewritten in the form

v_r = A(¢I(V1)..}_¢2(V2)._._..._]_¢i_l(Vi_l)_l_¢i(vi+e)_l..wi) '

Say, that the decoder at the ith stage of decoding decodes
the code sequence associated with the convolutional code to

be vi + e, and let the probability that the event occurs be

Pe. The exact expressions for Pe can be found in [2] and

[3] for the AWGN channel and in [4] for the Rayleigh-fading
channel. Let le denote the number of nonzero information bits

associated with the sequence e. Then the expected number of

bits in error (per decoding time instant) due to the sequence

e is le'p,. Since e is any arbitrary code sequence in the
convolutional code C_, the total number of bits in error at

the ith stage, E(Xi)lith stag ...... is obtained by considering
all the possible code sequences and adding up all the le "Pe

terms, i.e.,

E(Xi)lith stage error < E Ie "p_ (2.4)
eECi

where C_ denotes the set of all the code sequences in the
convolutional code, Ci.

Special Case--AWGN Channel: For the results derived

above, let us consider the special case when the channel

is AWGN. Let V be the transmitted code sequence and

let V be the decoded code sequence. Both these sequences

have the form as given earlier. Let D_ denote the minimum

squared Euclidean distance between V and _r. Since vj for

1 _< j _< (i- 1) is arbitrary, D_ has been taken to be

the minimum over all possible transmitted code sequences
for a fixed e. This is the worst case scenario, and as such

the minimum squared Euclidean distance D_ gives us an

upper bound on the performance of the code. Also, let

Are be the number of codewords at a squared Euclidean
distance of D 2 from V. The probability that V is decoded

incorrectly depends upon both D 2 as well as N_ [3]. The

code sequences vi and e can be written in the general form

vl = (viA,vi,2,'",vi,p,...), and e = (el,e2 .... ,ep,...),
where vi,p and % for 1 _<p < oc denotes the output sequence

(ni bits) of vi and e, respectively, at the pth time instant.

The minimum squared Euclidean distance between V and

V at the pth time instant depends only on ep and let this

squared Euclidean distance be denoted by D2. Also, let N%
be the corresponding number of nearest neighbors [3]. Then,

D2 = _'_p=l D2ep and N e = l'Ip=l N_. D_ and Ne can be
evaluated using the technique proposed in [3].

E(Xq)[qth stage error depends on whether the qth level
of encoding uses a convolutional code or is left uncoded.

If a convolutional code is used at the qth level, then

the expressions for E(Xq)lqth stage error are the same as

those derived above. However, if the qth level is left

uncoded then E(Xq)lqth stage error Can be upper bounded

as E(Xq)lqt h stag ...... _< BERq • kq, where BERq denotes
the decoding error probability (i.e., the block error probability)

for the last stage of decoding, i.e., the block of kq bits at the
qth stage of decoding would be declared to be in error if at

least one of the bits is in error. The block error probability

would depend on the decoding algorithm used at the qth stage,

i.e., single-stage or multistage. The block error probability can
be calculated using results of [6].

A very interesting and special case of the results derived
above occurs when q = 2 and the second level outer code is

left uncoded, as shown in [1, Fig. 2]. For this special case, we

can get a closed-form expression for Pb(e). Using (2.1) and
(2.2), Pb(e) can be written in the form:

Pb(e) <_ E(Xi)li stage error

E(Xl)llst stage error can be derived using

E(X2)12na stage error carl be upper

+ k2)

(2.5)

(2.4).

bounded as
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Fig. 1.
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An 8PSK signal constellation and its signal labels.

E(X2)]2nd sta.ge error _ BERz • k2. Let V be the transmitted

code sequence. Then, using [1, eq. (3.12)], V can be written

in the form X((pl(vl) + w2), where Vx is a code sequence
in the convolutional code used at the first level, C1 and

_o2 is a sequence of points from fi2. Let the decoded

code sequence associated with the convolutional code be

Vl + e, where e is a code sequence in C1. Pe gives us

the corresponding probability of this event. Let Wb(e)

denote the branch weight of e. Hence, the error sequence

e will cause at most wb(e) blocks of k2 bits at the second

stage to be in error, i.e., the number of bits in error at the

second stage of decoding, due to the error sequence e is

< k2 • wb(e). Using arguments similar to those used to derive

(2.4), (E(X2)l_rror propagation "Ps._) can be upper bounded

as(E(X2)[ ..... propagation' PEe) _-- Y'_eeC1 k2 " wb(e) "Pc.

III. EXAMPLES

Examples 1 and 2 construct codes for the AWGN channel,

Examples 3 and 4 construct codes for the Rayleigh-fading

channel and Example 5 constructs a code for the light shad-
owed mobile satellite communication (MSAT) channel. In the

following, we will use (n, k, d) to denote a linear block code

of length n, dimension k and minimum distance d.

Example 1: Consider the case of m = 8, q = 2 and
choose S = 8PSK. Hence g = 3. Fig. 1 shows the two-

dimensional (2-I)) 8PSK signal constellation of unit energy,

in which each signal point is uniquely labeled with three

bits, abc, where a is the first labeling bit and c is the last

labeling bit. Ihe labeling is done through signal partitioning

process [2]. Choose C0,l = (8, 4, 4) Reed-Muller (RM) code,

Co,2 = C1,2 = (8,7,2) code Co,3 = C1,3 = (8,8,1) code,
and Cl,t = (8, 1,8) code. The minimum squared Euclidean

distance of £0 = ,_(f_0) is 2.344 and for A1 = A(f21) is

4.0 [6]. The encoder structure will be the same as that in

[1, Fig. 2]. A. rate-2/3 code will be used at the first level.
Two choices will be considered for the convolutional code at

the first level. "The first choice is the four-state, dB_free = 2

code from [1, Table II] and the second choice is the 16-state,

dB-free = 3 code from [1, Table II]. The phase invariance

of the resulting code is the same for both the choices and is

45 ° and can be derived by a straightforward application of [1,

Theorem 7]. The spectral efficiency is also the same for both

the choices and is equal to (16+2)/8 = 2.25 bits/symbol. The

mapping q51used is linear. Details of _1 have been omitted due

to lack of space. The following gives a detailed discussion for
both the choices.

Four State: The minimum squared Euclidean distance of

the code is (refer to [1, Theorem 5]): rain{4.0, 2.344-2} = 4.0.

Using [1, eq. (3.12)], any code sequence in the super trellis

can be written in the form ,_(_l(Vl) q'- ¢dl), where vl is

code sequence in the 2/3-rate convolutional code used at

the first level and Wl is a sequence of points from f_l- As

such, the super trellis for this code is isomorphic to the
trellis of the convolutional encoder used at the first level,

with each branch of the trellis consisting of 216 parallel

transitions corresponding to the 2_G elements of F/1. fl_ has

a four-state, eight-section trellis diagram [6]. Each branch of

the super trellis can be expressed in the form A(w0 + fll),

where ¢o0 C [f_0/[21]. Hence, each branch of the super trellis

has a four-state, eight-section trellis, which is isomorphic to
the trellis of f_l. Standard Viterbi decoding can be used on

every branch of super trellis using this four-state, eight-section

isomorphic trellis to find the most probable parallel transition.
The trellis of the overall multidimensional code can thus be

viewed as a nested trellis diagram, i.e., a trellis within a trellis.

A reduction in the decoding complexity can be achieved

by using the multistage decoding algorithm proposed in [i,

Section V]. The decoding now proceeds in two stages. Let

V be the transmitted code sequence. Using [1, eq. (3.12)], V

can be written in the form A(_hl(Vl) + w_), where vl is a

code sequence in the convolutional code C1 used at the first

level, and ¢0_r is a sequence of points from f_. At the first
r_uP where any codestage of decoding, we form the trellis _1 ,

sequence in C_P can be written in the form _bl(ul) + _o_"p,

where _o__p denotes a sequence of points from f_uP and Ul
g:Tsupis a code sequence in C1. The details of how the trellis _1

is formed were mentioned in [1, Section V]. osup is chosen

to be: _up = (8, 1,8) * (8,8, 1) * (8,8,1) which has a very
simple two-state trellis structure. On the other hand, f_l has a

four-state eight-section trellis diagram which is more complex
o_P This helps in reducing thethan the trellis structure of o_ .

closest coset decoding complexity associated with the first

stage of decoding. Standard Viterbi decoding is performed on
the received sequence using the trellis A(C_P) to obtain an

estimate of vl, denoted "gl. This completes the first stage of

decoding.
At the second stage of decoding, we construct the trellis C2,

where a code sequence in C2 is of the form _1 (V1)+Wl, where

_Ol denotes a sequence of points from f_. Consider the pth
time instant. The structure of C2 at the pth time instant is of

the form C2,p = 4il(VLp) + f_l, where _,l,p is the component

of gl at the pth time instant. This trellis C2,v is isomorphic to

the trellis f_l and this trellis can be used to obtain an estimate

of _ot_ where _otr is the term in _o__ corresponding to the
1,p, 1,p

pth time instant.
The decoding complexity associated with the second stage

of decoding can be further reduced by using the three-stage

decoding technique for f2_ proposed by Sayegh [7] and Tanner
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[8]. We will carry out the second stage of decoding using the
three-stage decoding technique mentioned above)

The multistage decoding algorithm does lead to a slight
degradation in performance, however, as will be shown in

the performance curves, the loss is negligible as compared to

the reduction in complexity. The following gives the number

of computations associated with both the optimal and the
multistage decoding algorithm for the four-state trellis. The

complexity calculation for the multistage decoding algorithm

have been carried out assuming the three-stage decoding for

the second stage, as mentioned above.

Computation Complexity--Optimal Decoding Algorithm:

71 = 2 and kl = 2 : The branch decoding complexity Bcl is:

1) since there are eight 8PSK points per branch, the distance

computation complexity per branch is 64; 2) the survivor

calculation for the parallel branch transitions in f21 requires

32 compares; and 3) the Viterbi decoding for Q1 requires
52 adds and 27 comparison to calculate the final survivor

(assuming the survivor for the parallel transitions has been

found). Since there are eight cosets, the total complexity is 416

adds and 216 compares, i.e., BcI = 416 adds + 248 compares
+ 64 distance computations. Hence, total complexity is 54

adds q- 32.5 compares + 8 distance computations per two
dimensions.

Computation Complexity---Multistage Decoding Algorithm:

71 = 2 and kl = 2 : The branch decoding complexity is:

First stage of decoding: 1) There are eight 8PSK points

per branch, hence, the distance computation complexity per

branch is 64; 2) the suboptimal distance estimates [8] require
48 compares; 3) Viterbi decoding of osuP" _1 requires 14 adds and

one compare. Since there are eight cosets, the total complexity

is 112 adds and eight compares.

Second stage of decoding: 1) The multistage decoding
technique requires 26 adds and 13 compares; hence, total

complexity is 19.25 adds + 10.125 compares + 8 distance

computations per two dimensions.

Fig. 2 shows the simulation results of the bit-error per-

formance of both the optimal and the multistage decoding
algorithm. An upper bound on the bit-error rate (BER) of the

proposed code is also shown in Fig. 2. Details of the bound

have been omitted due to lack of space. Also shown in the

figure is the bit-error performance of a hypothetical uncoded

phase shift keying (PSK) system of the same spectral efficiency
[10].

Fig. 2 shows that the multistage and optimal decoding

curves converge around Eb/No = 8 dB, and the performance

of the optimal curve is only slightly better at low signal-to-

noise ratio (SNR). The proposed code achieves a coding gain
of 2.8 clB at the decoded BER of 10 -6 over the uncoded refer-

ence system of the same spectral efficiency [10]. In addition,

the decoding complexity of the optimal decoding algorithm
is roughly about three times the decoding complexity of the
suboptimal one.

Pielrobon et al. [3] do not have a comparable code over 8 ×

2 dimensions, hence, comparison will be made with a 4 x 2-

Note, the first stage of the three-stage decoding process for _1 can actually

be combined with the first stage of decoding of the TCM code, i.e., the stage

which uses the trellis _,_up.

dimensional code over 8PSK with "/= 2 and phase invariance

= 45 °. Spectral efficiency of this code is 2.25 bits/symbol,

same as that of the proposed code. The performance curve

of this code, taken from [12], has also been shown in the

figure. The complexity of the Pietrobon code is 24 adds +

17 compares + 8 distance distance computations per two

dimensions. As can be seen from the figure, the proposed code

outperforms the Pietrobon code by roughly 0.4 dB at 4 • 10 -8

BER, and in addition, the complexity of the proposed code

with multistage decoding is less than that of the Pietrobon
code.

16 States: The minimum squared Euclidean distance of the

code is (refer to [1, Theorem 5]) min{4.0, 2.344.3} = 4.0.

The super-trellis in this case is very similar to the four-state

trellis discussed above, with the only difference that the four-

state convolutional code at the first level, has been replaced

by the 16-state trellis. Both the optimal and the multistage

decoding techniques will be investigated for this case also.

The complexity associated with the optimal and the multistage

decoding technique axe as follows.

Computation Complexity--Optimal Decoding Algorithm:

"Y1 = 4 and kl = 2 : The branch decoding complexity Be, is

the same as the four-state case. Therefore, total complexity is

60 adds + 37 compares + 8 computations per two dimensions.

Computation-Complexity--Multistage Decoding Algorithm:

"/1 = 4 and kl = 2 : The branch decoding complexity is the

same as the four-state case. Therefore, the total complexity is

25.25 adds + 14.625 compares + 8 distance computations per
two dimensions.

Fig. 3 shows the bit-error performance of the both the

optimal and the suboptimal-decoding algorithm. An upper

bound on the BER of the proposed code using the multistage

decoding algorithm is also shown in Fig. 3.

Fig. 3 shows that the multistage and the optimal decoding
curves exhibit the same characteristics as the four-state case.

The two curves converge around Eb/No = 6.54 dB, and the

performance of the optimal curve is only slightly better than

the optimal curve at low SNR. The proposed code achieves

a coding gain of 3.2 dB at the decoded bit-error-rate of

l0 -6 over the uncoded reference system of the same spectral

efficiency [10]. In addition, the decoding complexity of the

optimal decoding algorithm is roughly about 2.5 times the

decoding complexity of the multistage one.

Pietrobon et al. [3] do not have a comparable code over

8 x 2-dimensions, hence, comparison will be made with a

4 x 2-dimensional code over 8PSK with "7 = 3 and phase

invariance = 45 °. The spectral efficiency of this code is 2.25

bits/symbol, i.e., it is the same as that of the proposed code.

The performance curve of this code, taken from [9], has also

been shown in the figure. The complexity of this code is 48

adds + 32 compares + 8 distance distance computations per
two dimensions. The performance of the proposed code is

slightly better than the Pietrobon code and in addition the

complexity of the Pietrobon code is about two times higher

than that of the proposed code with multistage decoding.

The 16-state proposed code with the multistage decoding

algorithm achieves better performance than the four-state

proposed code with the multistage decoding algorithm at the
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Fig. 2. BEP of the code in Example 1 with a four-state encoder at the first level for the AWGN channel.
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Fig. 3. BEP of the code in Example 1 with a 16-state encoder at the first level for the AWGN channel.

cost of slightly increased decoding complexity. The improve-

ment in performance is due to the higher minimum squared

Euclidean distance of the first decoding stage of the 16-state

code. This leads to better performance at the first decoding

stage and as a result reduced error propagation onto the second

decoding stage.

Example 2: Consider the case of m = 16, q = 3 and

choose S = 8PSK. Hence, _ = 3. Choose C0,z = (16,4,8)

code. This code is obtained from the first-order RM code of

length 16, by removing the all ones vector from the generator

matrix of the (16,5) code. Choose Cm,2 = (16,11,4) RM

code, Co, 2 : C0,3 = C1,2 : C1,3 : C2,3 : (16, 15, 2) code

and C1,1 = C2,z = (16,0, cc) code, i.e., the code consisting

of just the all zero codeword. The minimum squared Euclidean

distance for A0 = A(f_0) is 4.0, for A1 = A(f_x) is 4.0 and

for A2 = A(_2) is 8.0 [6]. A rate-3/4 code with 64-states

(second code in [1, Table III]) will be used at the first level.

Let us call this code C1. The same rate-3/4 code used at
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the first level will be used at the second level. Let us call

this code C2. The phase invariance of the resulting code is

90 °. The spectral efficiency is equal to (3 + 3 + 26)/16 = 2
bits/symbol. The mappings _bl and _b2 used at the first and

second encoding levels respectively have been chosen to be

linear. The minimum squared Euclidean distance of the code is

at least (refer to [1, Theorem 5]), min{8.0, 3.4.0, 3.4.0} = 8.0.

Note that the theorem gives the minimum squared Euclidean

distance associated with the first encoding stage to be at

least 12.0. A quick verification of the partitions given above

show that the minimum squared Euclidean distance is actually

3 × 8 × 0.586 = 14.064. This is obtained by considering the

squared Euclidean distance due to the (16, 4) code of f/0 and

multiplying it by the free branch distance of C1.

Optimal decoding of the multidimensional code would

require a trellis with 26 • 26 = 212 states. Optimal decoding

of the code using this 4096 state trellis would be extremely

complex, and as such we will focus on the multistage decoding

technique proposed in [1, Section V]. The multistage decoding

of the multidimensional code proceeds in three stages.

Let V be the transmitted code sequence. Using [1, eq.

(3.12)], V can be expressed in the form A(¢1 (Vl) + ¢2(v2) +
w2), where Vl is a code sequence in the 64-state convolutional

code C1, v2 is a code sequence in the 64-state convolutional

code C2 and w2 is a sequence of points from f_2.

First stage of decoding: To simplify the trellis decoding

complexity associated with the first stage of decoding, instead
_supof forming the trellis C'1 we form the trellis v 1 , where any

code sequence in _up can be written in the form (refer to [l,

Section V]), _1 (ul) +_up, where w_uP is a sequence of points
from ()sup°'1 and ul is a code sequence in C_. os_Po_1 is chosen

= osup hastO be, °sup_°1 (16, 0. ec) * (16, 16, 1) * (16, 16, 1)- _1
a very simple one-state trellis structure. On the other hand,

g21 has a four-state trellis diagram which is more complex

than the trellis structure of ft_ up. This helps in reducing the

closest coset decoding complexity associated with the first

stage of decoding. Standard Viterbi decoding is performed

on the received sequence using the trellis _up to obtain an

estimate of Vl, denoted _1. This completes the first stage of
decoding.

Second stage of decoding: To simplify the trellis decod-

ing complexity associated with the second stage of decoding,

instead of forming_ the trellis C'2, we form t'_supv2 , where any

code sequence in C_ _p can be written in the form (refer to [1,

Section V]), q6i (_1'_1) sup+¢2(U2)+W 2 , where o_ up is a sequence
of points from osuP o sup_2 and u2 is a code sequence in C2. _o2

°_P (16, 0, oc) • (16, 11, 4) • (16, 16.1).is chosen to be: "o2 =
Qsup2 has a eight-state trellis sttucture [ 11 ]. On the other hand,

f12 has a 16-state trellis diagram which is more complex
than the trellis structure of osup"°2 . This helps in reducing the
closest coset decoding complexity associated with the second

stage of decoding. Standard Viterbi decoding is performed

on the received sequence using the trellis C'_P to obtain an

estimate of v2, denoted v_2. This completes the second stage
of decoding.

Third stage of decoding: The third stage of decoding is

identical to the second stage of decoding discussed in Example

1. The three stage decoding technique proposed by Sayegh [7]

and Tanner [8] is used to split up the decoding of f/2 into
three stages. The first stage decoding of Q2 is trivial. Note,

the second stage of the three-stage decoding process for f22

can be combined with the second stage of decoding of the
multidimensional TCM code.

Computation Complexity--Multistage Decoding Algorithm:

71 = 6, kl = 3,72 = 6, k2 = 3: The branch decoding

complexity is:

First stage of decoding: 1) The distance computation

complexity per branch is 128; 2) the suboptimal distance

estimates require 96 compares; 3) Viterbi decoding of f_P
requires three adds. Since there are 16 cosets, the total

complexity is 48 adds.

Second stage of decoding: i) The closest coset decoding
°_"P requires 184 adds + 87 compares, which is the trellisfor "'2

decoding complexity of the (16, 11, 4) code [11]. Since there

are 16 cosets, the total complexity is 2944 adds and 1392

compares.

Third stageofdecoding: 1) The multistage decoding

technique for f_2 requires 58 adds and 29 compares. Note

that only the decoding complexity of the (16, 15,2) code

has been taken into account. The decoding complexity of the

(16, 11,4) code is included in the second stage of decoding

for reasons mentioned above. Hence, the total complexity is

254.62 adds + 150.81 compares + 8 distance computations
per two dimensions.

Fig. 4 shows the simulation results of the bit-error per-
formance of multidimensional TCM code. As can be seen

from the figure, the code achieves a 4.2 dB coding gain over
uncoded quaternary phase shift keying (QPSK) at 10 -¢ BER.

An upper bound on the BER of the proposed code using the

multistage decoding algorithm is also shown in Fig. 4.

Pietrobon et al. [3] do not have a comparable code over

16 x 2 dimensions, hence comparison will be made with a

2 × 2-dimensional code over 8PSK with 7 = 7 and phase

invariance = 90 °. The spectral efficiency and phase invariance
of both codes is the same. This Pietrobon et al. code is the

best in performance among all the codes listed in [3] for rate 2

bits/symbol. The performance curve of this code, taken from

[9], has also been shown in the figure. The complexity of

the Pietrobon code is about two times higher than that of the

proposed code, however, the proposed code has performance

comparable to the Pietrobon code at high SNR.

Example 3: Consider the case of m = 2, q = 3 and choose

S = 8PSK. Hence, * = 3. Choose C0,1 = Co,2 = C0,3 =

C1,2 = C1,3 = (2,2,1)code, C2,3 = (2,1,2)code and

C2A = C2,2 = C1,1 = (2,0, oo) code. The minimum symbol

distance of Ao = A(f_0) is 1, for A1 = A(f_l) is 1 and for

A2 = A(f/2) is 2 (refer to [1, Section HI]). The other distance

parameters associated with the three block modulation codes

can be found by a straightforward application of the distance
theorem in [5]. A rate-l/2 code with 16-states (fourth code in

[1, Table I]) will be used at the first level. Let us call this

code C_. A rate-2/3 code with 16-states (second code in [1,
Table II]) will be used at the second level. Let us call this code

C2. The phase invariance of the resulting code is 180 °. The

spectral efficiency is equal to (1 + 2 + 1)/2 = 2 bits/symbol.
The mappings (_1 and _2 have been chosen to be linear.
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BEP of the code in Example 2 for the AWGN channel.

The minimum symbol distance of the code is (refer to [1,

Theorem 6]), min{2, 3.1, 5.1} = 2. Since the minimum sym-
bol distance of the overall modulation code is the minimum

symbol distance of A2, hence the minimum product distance,

A 2 of the modulation code is /4.0) 2 = 16.0 (refer to [5]).
The decoding of this code is carried out in three stages and

proceeds exactly as discussed in [ 1, Section V]. The second

and third stage of decoding can actually be combined into

one single stage of decoding. The computational complexity
calculated below assumes that the second and third decoding

stages have been combined.

The minimum symbol distance of the first stage is chosen to

be higher than the rest of the decoding stages, so as to reduce

the effect of error propagation.

Computation Complexity--Multistage Decoding Algorithm:
'71 = 4, kl = 1,"/2 = 4, k2 = 2 : The branch decoding

complexity is:
First stageofdecoding: 1) The distance computation

complexity per branch is 16; 2) the suboptimal distance
estimates require 12 compares; and 3) Viterbi decoding of

f'tl requires 1 add. Since there are four cosets, the total

complexity is 4 adds.
Second and third stage of decoding: 1) Viterbi decoding

of f_2 is 2 adds + 1 compares. Since there are 8 cosets,

the total complexity is 16 adds and 8 compares. Therefore,

the total complexity is 58 adds + 42 compares + 8 distance

computations per two dimensions.
Fig. 5 shows the simulation results of the bit-error perfor-

mance of the proposed code. The performance of this code

will be compared with the 16-state rate-2/3 code over 8PSK

constructed by Schlegel and Costello [13] for the Rayleigh-

fading channel. The spectral efficiency for both codes is
the same, however, the Schlegel--Costello code has no phase

invariance. The performance curve of the Schlegel-Costello

code is also shown in Fig. 5. As can be seen from the figure,

the proposed code outperforms the Schlegel--Costello code by
about 1.6 dB at 10 -a bit error rate. In addition, the complexity

of the Schlegel--Costello code is 64 adds + 48 compares +

8 distance computations per two dimensions which is slightly

higher than that of the proposed code.
Example 4: Consider the case of ra = 8, q = 4 and choose

S = 8PSK. Hence, g = 3. Choose Co,1 = C2.2 : C3,2 :

C3,3 = (8,4, 4) RM code, C0.2 = C1,2 = (8,7,2) code,

C0,3 = C1,3 = C2,3 = (8,8,1) code and CI.1 = C2.1 =

C3,1 = (8, 0, oc) code. A rate-3/4 code with eight-states (first

code in [1, Table III]) will be used at the first level. Let us call
this code C1. A rate-2/3 code with 16-states (second code in

[1, Table II]) will be used at the second level. Let us call this

code C2. A rate-3/4 code with 64-states (second code in [1,

Table III]) will be used at the third level. Let us call this code

Ca. The phase invariance of the resulting code is 180 °. The

spectral efficiency is equal to (3+2+3+8)/8 = 2 bits/symbol.

The mappings q_l, ¢2, ¢3 and ¢4 are chosen to be linear.

The decoding of this code is carried out in four stages and

proceeds in a manner similar to that in Example 2. The first

stage of decoding is similar to the first stage of decoding in
o S"p used to simplify the decoding complexityExample 2. o=1

• suplS:121 = (8,0, oc) * (8,8,1) * (8,8.1). °°aO'_Phas a very

simple one-state trellis which is less complex than the two-
state trellis of 121. The second and third stage of decoding is

carried out exactly as described in [ 1, Section V]. The fourth

stage of decoding is carried out using the multistage decoding

technique for f_3 (as was explained in Example 1). The
multistage decoding of 123 proceeds in two stages. The first

stage of decoding decodes the code C3,2 and the second stage
decodes the C3,3 code. The decoding of C3,2 can be merged

with the second stage of decoding of the proposed code, and

the decoding of C3,3 can be merged with the third stage

decoding of the proposed code. The complexity calculations

given below assume that the fourth stage of decoding of the

proposed code has been merged with the previous stages.

Computation Complexity--Multistage Decoding Algorithm:
")tI = 3, k 1 = 3, "/2 = 4, k 2 -- 2, ")'3 = 6, k 3 - 3 : The branch

decoding complexity is:
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Fig. 5. BEP of the code in Example 3 for the Rayleigh-fading channel.
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Fig. 6. BEP of the code in Example 4 for the Rayleigh-fading channel.

First stageofdecoding: 1) The distance computation

complexity per branch is 64; 2) the suboptimal distance

estimates require 48 compares; 3) Viterbi decoding of f't] up

requires 7 adds. Since there are 16 cosets, the total complexity
is 112 adds.

Second stage of decoding and the first stage of the fourth

stage of decoding: 1) The closest coset decoding complexity

is 36 adds and 11 compares, which is the trellis decoding
complexity of the (8, 4, 4) code [11]. Since there are 8 cosets,

the total complexity is 288 adds and 88 compares.

Tkird stage of decoding and the second stage of the fourth

stage of decoding: 1) The closest coset decoding complexity

is 36 adds and 11 compares, which is the trellis decoding

complexity of the (8, 4, 4) code [11]. Since there are 16 cosets,

the total complexity is 576 adds and 176 compares. Therefore,

total complexity is 202 adds + 108 compares + 8 distance

computations per two dimensions.

Fig. 6 shows the simulation results of the bit-error perfor-

mance of the proposed code. The performance of this code

will be compared with the 64-state rate-2/3 code over 8PSK

constructed by Schlegel and Costello [13] for the Rayleigh-

fading channel. The spectral efficiency for both codes is

the same, however the Schlegel-Costello code has no phase

invariance. The performance curve of the Schlegel-Costello
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Fig. 7.
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BEP of the code in Example 5 for ashadowed mobile satellite channel.

code is also shown in Fig. 6. As cam be seen from the figure,

the proposed code outperforms the Schlegel--Costello code by
about 1.5 dB at 2 • 10 -4 BER. In addition, the complexity of

the Schlegel-Costello code is 256 adds + 192 compares +

8 distance computations per two dimensions which is higher

than that of the proposed code.

Example 5: A statistical model for the shadowed mobile

satellite channel has been devised by Loo [14]-[17] and

this model has been used by other researchers [18]-[23] to

study the error performance of coded modulation schemes
over the MSAT channel. In Loo's model, there are three

different kinds of shadowing-light, average and heavy. The

corresponding Rician factors are 6.16, 5.46, and -19.33 dB,

respectively. Therefore, in the shadowed MSAT channel, a

coded modulation system suffers very severe distortion due to

randomly changing phase and multipath fading. Especially,

if the Doppler frequency shift is large due to the motion

of vehicle, a coded modulation system faces the error floor

phenomenon. We will assume that the carrier frequency is

870 MHz and the symbol rate is 2400 symbols/s. Due to

randomly changing phase, perfect phase synchronization is not
feasible in the shadowed MSAT channel. Therefore, differen-

tially detected 8PSK modulation is used. We assume that the

speed of moving object is 92.88 miles/h. The corresponding

normalized fading bandwidth BT is 0.05, where B is the

maximum Doppler frequency shift and T -1 is the symbol

rate. To combat burst errors, a block interleaver is used for

computer simulation. The size of interleaver is 512 8DPSK

symbols, and the number of rows of the block interleaver is
64 and the number of columns is 8.

Consider the case of m = 8 and q = 3. Hence, g = 3.

Choose C0,1 = C2,2 = (8, 4,4) RM code, C0,2 -- C0,3 =

C1,2 = CI,3 = C2,3 = (8,7', 2) code and C1,1 = C2,1 ---

(8, 0, vc) code. A rate-3/4 code with eight-states (first code
in [1, Table HI]) will be used at the first level. Let us call

this code C1. A rate-2/3 code with 16-states (second code in

[1, Table II]) will be used at the second level. Let us call

this code C2. The phase invariance of the resulting code is

90 °. The spectral efficiency is equal to (3 + 2 + 11)/8 = 2

bits/symbol. The mappings _bl and _2 used at the first and

second encoding levels are linear.

Decoding of the code proceeds exactly as in Example 2, and

as such, will not be repeated here. The complexity calculations

are also very similar to Example 2, and as such details will be

omitted. The total complexity is 69.25 adds + 31.63 compares

+ 8 distance computations per two dimensions.

Fig. 7 shows the simulation results of the bit-error per-

formance of the proposed code. The performance of this

code will be compared with the 16-state rate-2/3 code con-

structed by Schlegel and Costello [13] (this code is chosen,

for lack of comparable complexity code available in literature

for the shadowed MSAT channel). The spectral efficiency

for both codes is the same. The performance curve of the

Schlegel-Costello code is also shown in Fig. 7. As can be

seen from the figure, the proposed code outperforms the

Schlegel-Costello code by about 9.65 dB at 10 -4 bit error rate.

Also, the proposed code faces the error floor at around 1.4 x
10 -5 BER, whereas the Schlegel---Costello code faces an error

floor around 4.8 x 10 -5 BER. In addition, the complexity of

the Schlegel--Costello code is higher than that of the proposed
code.

IV. CONCLUSION

A simple and systematic technique of constructing multi-

dimensional TCM codes using block modulation codes and

convolutional codes optimized for branch distance is proposed.

Bounds on the minimum squared Euclidean distance and

minimum symbol distance of the multidimensional TCM codes

are derived, along with conditions on phase invariance. A

multistage decoding technique for the multidimensional TCM

codes has also been proposed. Examples constructed show that

the technique can be used to construct good codes which have

a performance/decoding complexity advantage over the codes

available in literature for both the AWGN and fading channels.
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